首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   25篇
  2022年   5篇
  2021年   19篇
  2020年   4篇
  2019年   12篇
  2018年   22篇
  2017年   15篇
  2016年   19篇
  2015年   20篇
  2014年   22篇
  2013年   28篇
  2012年   36篇
  2011年   41篇
  2010年   34篇
  2009年   24篇
  2008年   31篇
  2007年   43篇
  2006年   35篇
  2005年   26篇
  2004年   24篇
  2003年   33篇
  2002年   18篇
  2001年   33篇
  2000年   21篇
  1999年   17篇
  1998年   5篇
  1997年   5篇
  1992年   19篇
  1991年   7篇
  1990年   11篇
  1989年   5篇
  1988年   11篇
  1987年   8篇
  1985年   5篇
  1983年   9篇
  1982年   4篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   5篇
  1976年   9篇
  1975年   8篇
  1974年   9篇
  1973年   7篇
  1972年   9篇
  1971年   10篇
  1970年   13篇
  1969年   9篇
  1968年   8篇
  1967年   5篇
  1965年   9篇
排序方式: 共有800条查询结果,搜索用时 15 毫秒
71.
Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation.  相似文献   
72.
73.
74.
75.
Oxidative stress is defined as excessive production of reactive oxygen species (ROS) overwhelming the cellular antioxidant defense systems and thereby damaging most constituents of cells including proteins. Reactive carbonyls, i.e. aldehydes, ketones and lactams, are a major class of irreversible oxidative protein modifications that are widely used as biomarkers of oxidative stress, aging and age-related diseases. Whereas carbonylated proteins can be studied by western blotting and ELISA, their site specific mapping still remains a challenging task due to their low abundance and insufficient ionization. Here, we present a new strategy to identify carbonylation sites in a bottom-up approach. Protein digests were derivatized with 2,4-dinitrophenyl hydrazine (DNPH) and separated by hydrophilic interaction chromatography (HILIC). Peptide-containing fractions were then analyzed by laser-desorption/ionization with DNPH as the reactive matrix, which favors DNP-labeled peptides. The mass list generated for each HILIC fraction, representing mostly DNP-modified peptides, was used in the subsequent nano reversed-phase chromatography (RPC) coupled on-line to an electrospray ionization Orbitrap mass spectrometer recording the tandem mass spectra in data dependent acquisition mode. This comprehensive two-dimensional HILIC×RPC-strategy was exemplified for tryptic digests of native bovine serum albumin (BSA) and β-lactoglobulin (β-LG), as well as their in vitro oxidized versions, i.e. oxBSA and oxβ-LG. In total, three carbonylation sites were identified in native β-LG, nine in native BSA, eleven in oxβ-LG and 32 in oxBSA.  相似文献   
76.
Reactive oxygen species (ROS) can oxidize proteins at almost any amino acid residue. Whereas some modifications are reversible within the cells, the higher oxidation states are especially irreversible. These irreversible post translational modifications are widely used as biomarkers of oxidative stress, such as protein carbonylation, which refers to aldehydes, ketones and lactams as 'reactive carbonyl groups'. This study relied on a set of synthetic peptides containing a C-terminal aldehyde (arginal) or modification with pyruvic acid (ketone) or 4-hydroxynonenal (aldehyde) at lysine or histidine residues, as well as peptides containing pyroglutamic acid (oxidation product of proline) and 2-amino-3-butyric acid (oxidation product of threonine). The carbonylation sites were specifically derivatized with 2,4-dinitrophenylhydrazine (DNPH) and the fragmentation behavior of the products investigated in electrospray ionization (ESI-) MS. Importantly, the DNPH-labeled carbonylated peptides showed favorable ionization behaviors in negative ion mode ESI, providing a sensitive detection method. Regular peptides were mostly discriminated under these conditions. Among the fragmentation techniques tested for the negatively charged ions, pulsed Q dissociation provided three diagnostic ions at m/z values 152.0, 163.1 and 179.0, specific for DNPH-modified peptides. These marker ions were successfully applied to detect the carbonylated model peptides in a spiked tryptic digest of bovine serum albumin and a complex protein mixture obtained from HeLa cells.  相似文献   
77.
Spatial organization of wild-type (strain U1) tobacco mosaic virus (TMV) and of the temperature-sensitive TMV ts21-66 mutant was compared by tritium planigraphy. The ts21-66 mutant contains two substitutions in the coat protein (Ile21-->Thr and Asp66-->Gly) and, in contrast with U1, induces a hypersensitive response (formation of necroses) on the leaves of plants bearing a host resistance gene N' (for example Nicotiana sylvestris); TMV U1 induces systemic infection (mosaic) on the leaves of such plants. Tritium distribution along the coat protein (CP) polypeptide chain was determined after labelling of both isolated CP preparations and intact virions. In the case of the isolated low-order (3-4S) CP aggregates no reliable differences in tritium distribution between U1 and ts21-66 were found. But in labelling of the intact virions a significant difference between the wild-type and mutant CPs was observed: the N-terminal region of ts21-66 CP incorporated half the amount of tritium than the corresponding region of U1 CP. This means that in U1 virions the CP N-terminal segment is more exposed on the virion surface than in ts21-66 virions. The possibility of direct participation of the N-terminal tail of U1 CP subunits in the process of the N' hypersensitive response suppression is discussed.  相似文献   
78.
Fedorova O  Pyle AM 《The EMBO journal》2005,24(22):3906-3916
Despite its importance for group II intron catalytic activity, structural information on conserved domain 3 (D3) is extremely limited. This domain is known to specifically stimulate the chemical rate of catalysis and to function as a 'catalytic effector'. Of all the long-range tertiary contacts that have been identified within group II introns, none has included D3 residues. Furthermore, little is known about the atoms and functional groups in D3 that contribute to catalysis. Using a nucleotide analog interference mapping assay with an extended repertoire of nucleotide analogs, we have identified functional groups in D3 that are critical for ribozyme activity. These data, together with mutational analysis, suggest the formation of noncanonical base pairs within the phylogenetically conserved internal loop at the base of D3. Finally, a related nucleotide analog interference suppression study resulted in the identification of a direct tertiary interaction between D3 and catalytic domain 5, which sheds new light on D3 function in the group II intron structure and mechanism.  相似文献   
79.
With the use three types of nutrient media made it possible to study the specific features of the biosynthesis of YopE, one of the main effector proteins, coded by Yersinia pestis virulence plasmid. This protein was proved to be produced practically at all stages of Y. pestis parasitism in the host body. The above-mentioned antigen was found capable of being synthesized, depending on the conditions of Y. pestis cultivation, in the form of membrane-linked (extracellularly and under phagosomal conditions) or secreted substance, mainly in phagolysosome. In the latter case the maximum level of its expression was registered. The experimental confirmation of YopE localization in the form of superficially localized antigen/receptor at the period of the extracellular growth of bacteria is presented, which suggests its important role in the realization of the virulent properties of Y. pestis and, together with the known data on the protective properties of the antigen, indicates the prospects of its use as the basis for the creation of new chemical antiplague vaccine.  相似文献   
80.
We have identified a new Saccharomyces cerevisiae gene, HIM1, mapped on the right arm of the chromosome IV (ORF YDR317w), mutations in which led to an increase in spontaneous mutation rate and elevated the frequencies of mutations, induced by UV-light, nitrous acid, ethylmethane sulfonate and methylmethane sulfonate. At the same time, him1 mutation did not result in the increase of the sensitivity to the lethal action of these DNA-damaging agents. We tested the induced mutagenesis in double mutants carrying him1 mutation and mutations in other repair genes: apn1, blocking base excision repair; rad2, rev3, and rad54, blocking three principal DNA repair pathways; pms1, blocking mismatch repair; hsm2 and hsm3 mutations, which lead to a mutator effect. Epistatic analysis showed a synergistic interaction of him1 with pms1, apn1, and rad2 mutations, and epistasis with the rev3, the rad54, the hsm2, and the hsm3. To elucidate the role of the HIM1 in control of spontaneous mutagenesis, we checked the repair of DNA mispaired bases in the him1 mutant and discovered that it was not altered in comparison to the wild-type strain. In our opinion, our results suggest that HIM1 gene participates in the control of processing of mutational intermediates appearing during error-prone bypass of DNA damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号